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Abstract

The generlized complex Ginzburg-Landau equation (CGL) under periodic boundary condition is studied. The existence

of global solution for this equation is established under appropriate assumption on a nonlinear o, which rigorously establishes the foundation

for further investigation of this type of model.
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The description of spatial pattern formation or
chaotic dynamics in continuum systems, particularly
in the fluid dynamical system, is a challenging task in
theoretical physics and applied mathematics. Due to
the complexity of the corresponding nonlinear evolu-
tion equations, simpler model equations for which the
mathematical issues can be solved with greater suc-
cess, have been derived. The complex Ginzberg-Lan-
dau equation is one of these equations. It models the
evolution of the amplitude of perturbations to steady-
state solutions at the onset of instability. It is a par-
ticularly interesting model because it is a dissipative
version of the nonlinear Schrodinger equation—A
Hamiltonian equation which can possess solutions that
form localized singularities in finite time.

The complex Ginzburg-Landau equation (CGL)
is of the form:
u,=put(1+ iu)uu“(1+iy)|u|2°u.

Doering et al. L Ghidaglia and Heéorn!?! studied
the finite dimensional global attractor and related dy-
namic issues for the one or two spatial dimensional
GLE with cubic nonlinearity (o = 1). Bartuccelli et
al. 1) dealt with the “soft” and “hard” turbulent be-
havior for this eguation. Doeringm presented the ex-
istence and uniqueness of global weak and strong solu-
tions for this equation in all spatial dimensions and for
all degree of nonlinearity o >0.

The generalized complex Ginzburg-Landau equa-
tion (CGL) is of the form:
uw,=put+ (1+iv)Au—-(1+ ilu)‘u |2%y
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+ad *V(ul?u)+ B(A, V) ul”.

Guo and Wang!®) studied finite dimensional be-
havior for this equation.

We consider the generalized complex Ginzburg-
Landau equation in three-dimension space
u,=pu —Ap(u) —(1+iy)Au— yAly
—(+ i) lul®u+ o V(| ul?u)
+ B2V u|?. (1)

The equation will be supplemented with the fol-
lowing usual initial-value and boundary conditions:
the initial-value condition

ul(x,0) = ug(x) in Q; (2)
the periodic boundary condition
02=(0,L{)*(0,L,;)*x(0,Ls), u is £2- periodic.
(3)

The main work of this paper is to establish the
existence and uniqueness of global solution for Egs.
(1) ~(3) under appropriate assumpation on a nonlin-

ear 0.
Our assumptions on o, ¥, p, v are (A):
(i) o, 7, p satisfy
1< 5 < mi 1 1
0o\ min s .
= J1+p2-1 J1+77 -1

(ii) There are positive numbers & >0 and choos-

ing suitable v such that

8_2 l + 2452 2y >
Z_V((l u8)+/1)/0.
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In the following, we denote norm of H'_({2) as

. per
same as the norm of usual Soblev space with the norm

1
lall =0 >0 IDul?)?andby Il - | the
per lsl<m

norm of H = Lier(ﬂ) with usual inner product

Ceyed), el » denotes the norm of Lf)er(.Q) for
1<p<<oo(ll«ll,=1-1).

1 [Existence and uniqueness of the solution

First, we discuss local existence of the initial-

value problems (1)~ (3).
The following inequality is needed:
Lemma 1. (Uniform Gronwall’s inequality)

Let g, h, y be three positive locally integrable
functions on [ zg, ), such that y" is locally inte-
grable on [ ¢g, @), which satisfies

dy
dt

j g(s)ds < ay, f

< gy+t+h, fort=t,,

t+

h(s)ds < as,

t

tt+r
J y(s)ds < aj,

t

for t = ¢y,
where r,ay, a, and a; are positive constants. Then

exp(ai), fort=t.

a
st =D,
Lemma 2. (Gagliardo-Nirenberg’s inequality in
a 3-dimension space)
F vl , <cll Veull 2 llullye,
where

:_L+al_m)+1—_a

1 m
P 3 r 3 q
with 1<Cq, r < o©. Two further restrictions are

0<{j<m and i<a<l.

We define a linear operator in X = L2, Au =
vA?u with definition D(A) = H*N Hé.

By Lumer-phillips theorem the linear operator A
is the infinitesimal generator of a continuous semi-
group of contraction S (t) = expAt for t >0 (see
Refs. [6,7]). Let

N(u) =pu — (1 + iv)Au + Ap(u)
-(1+iu)lu 12% + ay - V(I u 120)
+BR(A V) | u .

Thus we rewrite (1) in a shortened form
u,=Au+ N{(u).

In order to obtain the existence of local solution
of the initial-value problems (1) ~ (3) for every u,€

H ier( £2), we need the properties of the nonlinear op-

erator N.

Lemma 3. The nonlinear mapping N («) maps
H2, () into L}, (Q) and

per per
u,vEH, (),
ING) T <Clullg g
I N(u) = N(ov) |l
<C( ” u ” H2 Q) ” v “ Hz (g)) H u -
per per

satisfies for

v | H (@)
per

By using G-N’ s inequality, proof of lemma is
not difficult, we omit it here.

Therefore we have

Lemma 4. For every u € lem( ) there exists a
unique solution « of the initial-value problems (1) ~

(3) on a finite time interval ¢ € [0, T,..) so that
u € Cl([o’ Tmax)! leber(n))

ﬂ C( [09 Tmax) : Lf,el.(ﬂ ))
with the property that
T pax = or if T, <o

then lim [l u(t) | ;2 oy >0.
t—>Tnm per

Futhermore, by the results of [ 7], we know
that

u € CH[0, T,.): HA(Q))

per

ﬂc([()’ Tmax)3 lener(n))

Proof. The result follows from [6] (theorem
3.3.3, theorem 3. 3. 4, theorem 3.5.2) and [7]
{(theorem 6.3.1).

2 A priori estimate

In order to show the global existence for all
t >0, we need to establish some time-uniform a priori

estimate on « (t) in Lier(ﬂ) and H:,er(ﬂ),
H2,(2).

per

Lemma 5. Assume that uy € Lf,e,(.Q ), and
¢ (u)<C0. Then for the solution u(z) of (1)~ (3),

we have

lwl2<Ki;(luoll,T), t€&€1[0,T]; (4)
t+1
f law l2de <Kol ugl, T), ¢ € [0, T

(5)
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1+1
J la 2224t <Kyl uo 5 T),
t

t €[0,T]; (6)
where K depends on T, and T depends on the data
0,0, Y, psv,a, B and R when || ugll <R.

Proof. Taking inner product in Lf,er( 2) of (1)
with # and then taking the real part of the resulting
identity, it follows

2 =p w2+ IV 2= ) 2w

~Cagtu),u) = | ful??

+ Re(u,ar; V(| ul?u)
+ R Vu)lul?). (7)

Obviously, we have

Re(u,ar V(| ul?u)+B8(XVu)lul?)=0.

For the fourth term of (7) on the right side, we
have
(Ap(u),u)=-(Vol(u),Vu)
=—( ¢ (w)Vu,Vu)
=— (¢ (), | Vull®) =0,
and note that
IVeall><laull Il el
<

y 2, 1 2
~ + o :
A POT

Thus synthesizing the above inequality we obtain

1 o
T s 2 | ful?

<

~

(7S (8)

1
‘0+2v

Therefore, applying Gronwall’ s inequality we
obtain (4). After integrating (8) with ¢ between t
and r +1, we obtain (5), (6).

Here and after we denote ¢ as any constant de-
pending on the data g, o, ¥, £, v, @, 8.

Lemma 6. Under the assumptions of (A), and
when
o (W) 1< Clul?, 0<p< 2,

for the solution of the problems (1)~ (3) we have
I Vall? <Kyl ugll 2, T), t€l0,T],

where K, depends on data and T, and T depends on
R when | uq |l 4 w<R.

Proof. Multiply (1) by — A%, and then inte-
grate it on {2 and taking the real part of the resulting

identity, we find that

1 d

T Vull2=pll Vull?+ | Aull?
vl VAu I+ ( Ag(u),Au)
+ Re(1 + i)u)J. | u 1%°uAi

— Re(Au,ad; - V(I u 1%u)
+B8(A, *Vu) I ul?). (9)

First, we have
(Ap(u),Au)=~ (Vo(u),VAu)
=- (¢ (u)Vu,VAu)
Sclullf, M Vullsll Vaull .

Noting that G-N’ inequality
r=2 r+2
lul, <cll Vaul 2 Jull 2, (10)

S5r=6 16
FVul,<cl Vaull 6o lull &, (11)

we get

3048 104
(Ap(u),Au)<cll VAaull & lull 6
since 0 < p < %

g% | VAu |2+ ¢ by Lemma 5.

(12)
Since
|u12|Vu!2:%|Vlu|2|2
+%|uV17—17Vu|2, (13)

hereafter, we will make use of the identity.

The fifth term in (9) on the right is changed to
Re(1 + i,u)J | u 1%uda

= — Re( 1+iy)J!u 127 | Vu |?
—Re(1+i,u)0'J.| ul*uvVavViul?

:—Jlulz"IVulz

_ o 20 2,2
2J‘lul V91wt

%paf lu 12V ul?
ci(uVu—-—uaVu)
=—%J| u 122((1+26) IV ul?)?

—2poVIlul?i(uVa—aVu)
+luVa —aVul?). (14)
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The integrand in (14) is a quadratic form in
these quantities that will be nonnegative provided the
matrix

1+206 ou
ou 1
is nonnegative define, i.e.
1
o< /.
J1+42-1
Noting
1 1
I Vall < laull2llal?z,
we deduce that
1 1
law | <|Vaul2lVaul?2. (15)

Using G-N’ inequality, we deduce
3 S
lullpt << lAull®lluls, (16)

lallp2<< Il VAull Ol u ;"’, (17)
8_
where0=4(7qq—), for 1< ¢<8;0=0 for ¢=>8.

And we deduce

3 s
[ Val o< Il Vau 18] Vu 8. (18)
Hence, for the sixth term of (9) on the right side we
deduce
|— Re( Au,B(A3 - Vu) !l ul?)|
\lﬁAZIJIAuIIVuIIuIZ
<1 laul I Vallgllall?
1l 1 3
Il I Vaull2l Vull2]l VAu |l 8
S _
AR P I P %
<l | Vaul§%
1 _
Va8 w2

v 2 _16
<L Vaul?+ e, 15

_18 2(1-0)
| V|| 9-166 || o | .0 169

and9—160>0thenq>%
<%” Vaul?+¢cll Vall*

32 64(1-0)
+c | BAy 197326 | o | 0320

and9—326’>0thenq>%

<= |

. Voaull?+cll Vu | *

__32q¢
q - =
2+ c | PAy 199-3206-647645

+ellaul
_ _8-q
as 0 = 22+ q) and
126
9qg — 32¢0 — 64 + 646 > 0 then ¢ > = 17
<L Vaulltecl vl
+ +
+cll ull ;ZI; +cl BAy I 17049
46
Letg =20 +2. Byo = 3>17
we have ¢ = 20 +2 > 11276 (19)
Similarly, due to
VO u 2u)=1u1?Vu +VI u 1?u
=21 ul*Vu+ 4*Va,
we infer that
| — Re(Au,ary V(I u 1u)) |
<é|| Vaull2+cll Vall*+cllull3et?
64(c+1)(s+2)
+c |l ady ! 170-49 (20)

We give from Egs. (9),
(20) that

1d 2, Y 2
P | Vull?+ > | VAu |
<pll Vall?+ llAull?

+ell Vall* +clullli?+c

(12), (14), (19),

64(c+1)(g+2)
+c(l Ry l+1ary 1) 17a-49 . (21)

By Lemma 5, we have
cl Vull>=c(-Bu,u)
<cllawll lell <kloul,
where k£ depends only on the data, and thus we de-
duce that
lAull>+cll Va [ *<(1+ &%) || Au || ?
=— (1 +£)(VAu,Vu)
<(1+k I vaull | Vall
<

~ | VAu ||2+~(1+k VIl Vol 2.
(22)

We obtain from Egs. (21), (22) that
H Vu||2+f|| Vaull?

Q-.|Q_

1
2
2 p

< ,0+7(1+kz)2 I Vaull2+cllull?

64(a+1)(s+2)
+C+C(|BA2|+|0A1|) 176-49 . (23)

By (5) and
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[ Vull?2 == Qu,w) < ldull?+cllaull?

we deduce that

il 1+l
[ venzae <] lawia e <K +e
t =1,

Noting (6), and applying uniform Gronwall’ s
inequality to (23), we obtain the proof of Lemma 6.

Lemma 7. For solution « (¢) of (1)~ (3) we

have

45+2

|20+2 + _‘ ll w I ol

.
7(1+a)dtj|
+ujAu|u|2"17
Lelldull?+ell Vull*+¢

1626+ +4
+c(e)(lady I+1 BAy 1) 276-52

(24)

Proof. Multiplying (1) by | « |*u then inte-
grating it on (2 and taking the real part of the result-
ing identity, we find that

l—i 20+2
(7

5_(1+a) ds
= pjl u 1272 + Re(1 + i}’)jAu | u %7
+ (Agp(u), | u 1%°)
- ufazu lu 1%u —j | 1472
+ Re(l wu 1%%u,ak; « V(I u 1%u)
+ B(Ay - Vu)l ul?). (25)
First
(Ap(u), | u < lapCu) Il el 3;1;

20+1

< @ (u)(Vud) + o (w)dull | wll 52,
<L (cllu |!4(,, vl Vau [

+ e H u H 5 20+1

H Au “ 4) lI u ” 4o+2"

’s inequality

1 5
el A%u i 12w | 12,

Because of G-N

| Au |l 4 <<
3 S
I Vullg<<clla?all 8] wlls,
we have
(Ap(u), | u 7)) < L||u||4(p D ||Vu”§
el ullf, hawllolullis;
L” u ” 4042
8 do+2
+C1|A2u|l ||Vu||2||u||
+CHA2uH HVuHGHuH

since p < %
<glulisdeelaul?+ e, (26)

where we have used Young’s inequality, and Lem-
mas 5 and 6.

Owing to (13), the second term in (25) on the
right side is changed to

Re(l+z’)’)JAu | u 12
=— Re(1 + i)’)JIVu 2] 4 |%°
— Re(1+ i)’)ja Fu 1225 Vu Vlul?
—JIVuIZIuiz"
o 262 2 2
2J|u( Vw2

+—é‘}'ajl w2Vt ul?
ci(uVa—-—aVu)

=—ﬂ|u 120°2((1 4+ 26) 1V u 1212
—2y6VIiut?i(uVa-—aVu)
+luVa—-aVu l?). (27)

By Young’s inequality and Lemma 5, the first

term in (25) on the right is changed to

pj|u|2”+2=pjlu|2°+l-\zl\

<—é—[| u |4a+2+2pzjlu 12

<—é—J| W1 e Y > (28)

By G-N’s inequality, we deduce

1 3
Fall e <l Va4l w s,

Pl o< A% 190wl
__24-3q .o -
where 6 2(615¢)’ for 1< g<8; =0 for q=8.
And we deduce

| Vel < 1A% 5 Va5,

Thus, the fourth term in (25) on the right is

changed to
| Re(| u 1%°u, 83+ Vu)l ul?)]

Reﬂj(lz'Vu) | w 12772y

<|3A2|J|Vuuu|2>u|2“”

1 p
3|BA2|2I1Vu|2|uI4+T6J!u|4+2
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<308 2 Vel i lwlf e qgf 1w it

<318 120 A% i | Vull 4)2
N QPSR RN st

.1_ 40+2
+ 16J [ u |

1 3
=318, 2 A2u 2| Va2

J b u |4a+2

2.2 P

LellA®u |2+ c(e) ! BA, 13-86
6 1611-0)
= =

L 40+2
+ 16J | u |

P

24 - 134
a50_4(6+5q)’
and3—80>0thenq>%

<ellA?ull?+ell Vull?

_8 201-6)
+c(e) | Bry 137160 || 4 | 37160

.L 40+2
+ 16,[ [ u |

_ 24-3g
350 = 46+ 5¢)
26
and 3 — 160 > 0 then ¢ > 9
SelBul? el Val*+lull

8¢
+ c{e) | BA, 13q-1696-32+326

L 40+2
+ 16J. | u |

24 -3¢
as 0 = 4(6 1 5¢ ),and
262
3q—16q0~32+326’>0thenq>27
€||A2u||2+e||Vu||4+ ||u|i§1§
(20 + +
+ c(e) | BAsy | 275-52
L 45+2
+16j|u|
(Letq=4a+2.Byo 3>%
wehaveq—4a+2>22672

1 p
Seldul?+ell Vull*+ g llull$h
16(26+1)(50+4)
+c(e) | By | 21e-52 . (29)

Due to

lu 1?Vu +VIulu
=21 ul*Vu+ uZVﬁ,
and similar to the above estimate, we infer that
Re(l u 1”u,ady » V(I u 1%u)) |

<31allljlu|2”+1|u|2|Vu|

V(I u [24)

1 p
Selaul?+ell Vul*+ gl [Pyt
16(2¢+1)(50+4)
+c(e) | aky | 276-52 . (30)

By Egs. (25)~(30), we obtain

1 2
\25+2 + = ” u ” :Ziz

1 QJ‘I
2(1 + o) dt
+ VJAZu | w 1?7
Selldull?+el Vul*+e
+c(e)(laky 141 BAz 1)

—ij u 12972((1+26) 1V uI?)?

+ +
276~52

4
2% Viul? i(uVa-aVu)
+luVa-—aVul?) +c. (31)

The integrand in the last term in (17) is a
quadratic form in these quantities that will be nonneg-
ative provided the matrix
1+ 2¢ a}’)

oY 1
is nonnegative define, i.e.

1

J1+ 2 -1

Thus, we complete the proof of Lemma 7.

o <

Lemma 8. Assume that the conditions of Lemma

6 hold, and
P (w) 1< el u 1?7
where p is the same as in Lemma 6. Then for ug&
Hper(ﬂ), the solution of problems (1)~ (3) satisfies
| Au | < K4(T) for t € [0, T],
where K3 depends on T, and T depends on R when
I gl H <R, I wg Il 2+2<<R.

Proof. Taking the inner product of (1) with
A%y, and taking real part of the resulting identity,
we find that

2 dt laull>=plaul?+ || Vaul?
—vlla%u 12~ (Ap(u), M%)
—Re(1+i,u)J‘|u 129 A5

+ (A‘?u,a/ll V(1w 1%w)
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+ B Vu) !l ul?). (32)

We estimate each term of (32) on the right side

now.

We get
= (Ap(u), Au) < [l ApCu) || 1| A% |l
< @ (u)(Vu)? + ¢ (w)Au || | A%u |
Scllulld yl Vallg ol

tollullf, laull Al .

Because of G-N’ inequality

7 s
[ Aull g << cllA%ull 2] ull 12,

I Vals<clAulld)ult,

we have
- (Qp(u), ATw)
ellwlfnl Vullil a?u

+cellulf ||Auf|4||A2u||

<c|lA2u||1+ ||Vu|l4llu||

ol At lquHlleulI
|1+ 8

at6p
Lellau 17716 + o || A% |

<-|| Aull?+ e, (33)
where Young’ s inequality, Lemmas 4 and 6 are
used.

By G-N’s inequality

lal < | Vel 3 a3,

lallp<< Il A% Hﬁﬂ u||32,
for the fifth term of (32) we estimate
(A*u,ary - V(I u 12u))

<l ad; | UAZu V(O u 1%u)

<3|aA1|frA2u||u|2|Vu|
<3lad Il D ullall Vaull,
<3lah | A% e Ve E T
<—H Mull?+e, (34)

where Lemmas 5 and 6 are used.

Similar to (34), we have

| (A2u, B(As ~Vu) | ul?) rg—g—ll Ay |2+ c.

(35)

Therefore, combining (32) with (35), we ob-

tain
1d 2, Yo A2 )2
Ld sz e 28]
<plaull?+ | Vaull?+c
— Re(1 + z'y)J | u 12uia. (36)
Taking a linear combination of (24} and (36),
we obtain
1 d 62 20+2
2 4l 1aul? 1+aj'“'

8 “
+§HA2u |I2+5Hul|;‘;§

<%l Aull?+plldull?
+ Il VAau |2+ e8?ll Vu lI'?
~ Re(v8% +1+ zp)JAZu | u 1%% + ¢

+c(e)(lary I+1 8z 1) e .
(37)

When e is small enough, and noting G-N’s in-
equality, we easily obtain
el Aull>+pllaull?+ || VAull?

+ e8|l Vu ||4<i” Aull?+c. (38)

For the fifth term of (37) on the right side, we
obtain

Re(wd? + 1 + i#)j | w 1*°una
< VA + D)+ w5005 1 A% |
<2 s

F 8D+ ) e 2 (39)

Let
* 1
k=0 = (477 + ph).
Noting condition (A) (ii), we obtain from (37) ~
(39) that
1d 2 8? I 2642

F Ak

+

s
Lctce(lary [+ By 1) 276-52

(40)
We also obtain very easily

Llhaul?< I8l o,
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k||u|§ii§=kj|u|2"+1lul

< [0t

1+o¢ 45+2+C'

Therefore, we infer

1d 2 32J 25+2)
T | Aw | +1+6 (7

T
“ 1+o “
1626+ 1)(5g+4)
Kctce(lady 1+] By 1) 270-52
Vezt™, (41)
where ¢t * =Maxitq, t,1, and ¢, ¢, are the same as
in Lemmas 5 and 6.

It follows from Gronwall’s inequality that

62 20+2
e < KT,
Y:e[0,T],

which completes the proof of Lemma 8.

Fawll®+

From Lemmas 5~ 8, we obtain the existence of
global solution of the problems (1)~ (3).

Theorem 9. (Global existence) Assume that the
conditions of Lemmas 5~ 8 hold. Then for any T >0,
there exists a unique global solution of initial-value
problem for the 3-D generalized complex Ginzburg-
Landau equations (1) ~(3), such that

u€ CY([0, T]: Ho (2)NC([0, T]: H2(2))
NL=( [0, T1: LE"(2)).

References

Doering, C. et al. Low-dimensional behavior in the complex
Ginzburg-Landau equation. Nonlinearity, 1988, 1: 279.
Ghidaglia, J. M. et al. Dimension of the attractor associated to the
Ginzburg-Landau equation. Phys. D, 1987, 28. 282.
Bartuccelli, M. et al. On the possibility of soft and hard turbulence
in the complex Ginzburg-Landau equation. Phys. D, 1990, 44.
421.

Doering, C. R. et al. Weak and strong solutions of the complex
Ginzburg-Landau equation. Phys. D, 1994, 71 285.

Guo, B. et al. Finite dimensional behavior of the generalized
Ginzburg-Landau equation. Progress in Natural Science, 1994, 4:
423.

Henry, D. Geometric Theory of Semilinear Parabolic Equation.
Berlin: Springer-Verlag, 1981.

Pazy, A. Semigroups of Linear Operators and Applications to Par-
tial Differential Equation. Berlin: Springer-Verlag, 1983.




